Flip a coin?

Titrating Vasoactive Medications

Julie Miller, RN, BSN, CCRN

What’s Important?

• Everything!

What’s Important?

• Autonomic Nervous System
 • Sympathetic
 • Parasympathetic

Sympathetic

• Fight or Flight
• Thoracic spinal cord
 • Epi & Norepi
 • RAAS

Sympathetic

• Speeds things up

Parasympathetic

• Feed and Breed
 • Brain stem and medulla
Parasympathetic
- Slows things down
- Balances Sympathetic
- Vagus Nerve
- Acetylcholine

The Receptors
- Beta One Cells
 - 1 Heart
 - Increase
 - heart rate
 - contractility
 - automaticity
 - conduction velocity

The Receptors
- Beta One Cells
 - When blocked?
 - Bradycardia
 - Decreased
 - Contractility
 - Automaticity
 - Conduction Velocity

The Receptors
- Beta Two Cells
 - 2 Kidneys
 - 2 Lungs

The Receptors
- Beta Two Cells
 - Peripheral arterioles
 - Vasodilation
 - Bronchodilation

The Receptors
- Beta Two Cells
 - When Blocked?
 - Bronchoconstriction
 - Vasoconstriction
The Receptors

• Alpha Receptors
 • Peripheral arterioles
 • Vasoconstriction
 • “Clamped down”

• Dopaminergic
 • Mesenteric
 • Vasodilation
 • Renal
 • Vasodilation

• Baroreceptors
 • Sensitive to stretch
 • Detect changes:
 • Aortic arch
 • Carotid sinus

• Problems with Trendelenburg
 • Baroreceptors are confused
 • Trendelenburg Useful for Cervical Line Placement, Some Spinal Anesthesia Techniques
 • Trendelenburg for Hypotension?
 • Question if Should Use at All
 • AJCC September 2005 Vol. 14 #5, 364-368

The Receptors

• Alpha receptors
 • When blocked?
 • Vasodilation
The Receptors

- Chemoreceptors
- Aortic Arch

- “Samplers” Detect
 - Decreased PaO2 and Increased PaCO2 and H+ ions
 - Stimulate Fight or Flight

RAS

- Hypotension
- Renin Release (Kidneys)
- Angiotensinogen (Lungs)
- Angiotensin I

Atrial Natriuretic Peptide

- Hormone secreted
 - Increased atrial pressure
 - Vasodilator
 - Excretes sodium and water
 - Salt Wasting – Triple H Therapy

Brain Natriuretic Peptide

- BNP Hormone secreted from ventricles
- Blocks RAAS
 - Vasodilator
 - Increases Excretion of sodium and water
 - Decreases secretion of Aldosterone and Renin

BNP Treatment for CHF

- Nesiritide aka NATRECOR
 - BNP
 - Increased Hypotension with ACE – I

- Dose: 2 mcg/kg bolus followed by 0.01 mcg/kg/min
Glucocorticoids
- Released
 - Gluconeogenesis – Formation of glucose from fats and proteins
 - Glycogenolysis – Formation of glucose from glycogen stores

ADH
- Anti-Diuretic Hormone
- Secreted by Pituitary Due To SNS Stimulation

Factors That Affect CO
- Cardiac Output
- Preload
- Heart Rate
- Contractility
- Afterload

Medication Effects
Preload = Volume
- Increase
 - Volume
 - Crystalloids
 - NS, LR
 - Colloids
 - PRBC, Albumin 5% & 25%, Hetastarch
 - Vasoconstriction
 - Dopamine, Epi, Norepi, Neo, Vasopressin
- Decrease
 - Diuretics
 - Natriuresis
 - Nesiritide (BNP)
 - Vasodilation
 - Nitroglycerin
 - Nitroprusside
 - Dobutrex
 - PDE Inhibitors
 - Dopamine < 3
 - Alpha Blockers
 - ACE Inhibitors
 - A II Blockers
 - Phenolamine
 - PEEP

Afterload = Resistance
- Increase
 - Vasocostringtion
 - α Stimulators
 - Epi, Norepinephrine, Neo-Syneprine
 - Dopamine > 10 mcg/kg/minute
 - Vasopressin

Afterload = Resistance
- Decrease Afterload
- Vasodilation
 - Beta 2 stimulators
 - Dobutamine
 - Isoproterenol
 - PDE inhibitors
 - Milrinone, Amrinone
 - ACE Inhibitors – “Pril”
 - Angiotensin Blockers
- NTG & NIPRIDE
 - Calcium Channel Blockers
 - Nicardipine
 - Cardizem®
 - Diuretics
 - IABP
 - Natrecor® (BNP)
 - Alpha blockers
 - Coreg®, Labetalol

Contractility = Inotropic
- Positive
 - Dopamine
 - 3 - 10 mcg/kg/min
 - Dobutamine
 - Epinephrine
 - Norepinephrine
 - PDE inhibitors
- Negative
 - Beta blockers
 - Mixed
 - Beta/Alpha Blockers
 - Coreg®
 - Calcium Channel Blockers
 - Hypoxemia
 - Acidosis

FROM Assessing THESE:
- Cardiac Output
- Preload
- Contractility
- Afterload

TO Intervening with:
- DRIP TITRATION
Titration

Choosing a method
- Assess your patient
 - All systems affect and will be affected by drip titration
- Evidenced Based Guidelines
 - Surviving Sepsis
 - Titrating Algorithms
- What to look for and why

Titration

Cardiac Function
- Preload
- Afterload
- Contractility
- Heart Rate
- Blood Pressure

BP 70/50 HR 148 -- Acute MI
- Lungs - Crackles, Peripheral edema, diminished pulses, mottled skin
- On Dopamine at 18 mcg/kg/min
- Nitroglycerin at 30 mcg/min

What are your thoughts regarding preload and afterload?
- Assessment
- Dopamine and Nitroglycerin

Volume or diuretics?
- Diuretics
 - Natriuresis NOT Indicated in Cardiogenic Shock
- Wean the dopamine?
 - Definitely – Reduce the Afterload
- Add new drips?
 - Vasodilation with a Positive Inotropic
 - Dobutamine or PDE Inhibitor

BP 70/50 HR 148 -- Acute MI
- Lungs - Crackles, Peripheral edema, diminished pulses, mottled skin
- PIP 50 cm H20, PEEP 8 cm H20
- SaO2 .91, Mode SIMV

What thoughts regarding ventilator assessment?
Titration

- Ventilator Adjustment?
 - Mode?
 - Change to Pressure Regulated Mode
 - PRVC, APRV, Bi-Level
 - PEEP?
 - Decreases Preload, Increases PVR
 - Need for Oxygenation
 - Ongoing assessment

- Cerebral perfusion
 - MAP
 - LOC
 - GCS

- PEEP?
 - Decreases Preload, Increases PVR
 - Need for Oxygenation

- Ongoing assessment

Titration

- Renal Function
 - BUN, Cr
 - BUN/Cr ratio
 - Na, K+
 - Urine output

- BUN – 35
- Cr – 1.5
- BUN/Cr – 23:1
 - Pre-renal
 - Na: 134
 - K: 3.6
 - UOP: 25 cc/h
 - Drip titration?

Titration

- Balancing
 - Use Your ASSESSMENT
 - ONE Drip at a TIME
 - Variable Creating Most Instability
 - Titrate against and MONITOR
 - Go SLOW
 - Know the Medication Half Life
 - How Often to adjust

Weaning

- Balancing
 - Use Your Assessment
 - ONE Drip at a TIME
 - Pick Most STABLE Variable
 - Go SLOW
 - Follow TRENDS – Do Complete Assessments
 - Stop Weaning if assess Instability
 - Know the Medication Half Life
 - How Often to adjust
 - How Long to Expect Result
Titration Tidbits…

- Norepi – Afterload
- Epi – HR & Contractility
- Levophed and Leav’em Dead
- Dopamine – Afterload > 10
 - Renal Function NOT Improved < 3
- Fluids
- Nitroglycerin - Preload
- Nipride - Afterload
- Fenoldopam
- Dual Action drugs
- Labetalol – Avoid in Brady or Blocks

Types of Shock

- Hypovolemic Causes:
 - Internal
 - GI Bleed, Ascites, Sepsis
 - Internal Hemorrhage
- External
 - Hemorrhage, Vomiting Diarrhea

<table>
<thead>
<tr>
<th>SHOCK</th>
<th>TYPES</th>
<th>SEVERE</th>
<th>SEPSIS</th>
<th>SEPTIC SHOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitals</td>
<td>HYPO-VOLEMIC</td>
<td>CARDIO-GENIC</td>
<td>NEURO-GENIC</td>
<td>SEPSIS</td>
</tr>
<tr>
<td>Pulse</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>BP</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>CVP</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>PAOP</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>CO/Cl</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑↑</td>
</tr>
<tr>
<td>SVR</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>PVR</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Case Study

- 42 yo F admitted for GI bleed
 - HR 142, BP 86/46, CVP: 2, SVV: 18%
 - UOP: < 30cc/h
 - Skin: cool, clammy,
 - Pulses: weak & thready
 - Vitals Indicate 30 – 40% Blood Loss
 - What type of shock?
 - What interventions?
Case Study

- Interventions?

Volume, Volume, Volume

- Crystalloids, RBC, Colloids
- Hypertonic Resuscitation Research
 - Decreased Gut Perfusion
 - Increased Renal Failure and Death

Types of Shock

- Cardiogenic Causes:
 - Massive MI
 - Severe mitral or aortic disease
 - Cardiomyopathy
 - Pulmonary Embolism

Types of Shock

- Cardiogenic Assessment
 - General Appearance
 - Skin cool, clammy, Decreased capillary refill

Types of Shock

- Neurogenic Causes
 - Disruption of the SNS
 - Spinal cord injury above T-6
 - Spinal anesthesia
 - CNS dysfunction
 - Drugs, Emotional Stress, Pain

Types of Shock

- Neurogenic Assessment
 - General Appearance
 - Skin cool, clammy, Pink or Paled, Decreased capillary refill

Types of Shock

- 52 yo F admitted for Ant/Lat MI

 HR: 129, BP: 98/72, CVP: 16
 PAOP: 25, CI: 1.9, SVR: 1992,
 PVR: 225, UOP: 25 cc/h

C/O SOB, Crackles & Distant BS
Skin: Cold, clammy, LE Mottled
SpO2: 91% on NRB mask
Case Study
- 84 yo M, C-3 fracture, placed in halo traction, methylprednisolone drip
 - Room Air Sat: 95%
 - HR: 72, BP: 100/52, RR: 12 & Shallow,
 - UOP: 5 -10 ml/h, Skin: cool, No Response to 2 Liters NS & 500 ml Hetastarch
 - Skin Cool and Dry
 - LOC: Arouses to Slight Shaking, Garbled Speech, Disoriented to Time

Case Study
- Over 6 Hours
 - Intubated, PA & Art lines, FAST & DPL
 - 0200 Hemodynamics
 - T: 94, HR: 58, BP: 68/24, UOP: 0, RR: Vent
 - CI: 0.7, SVR: 120
 - Type of Shock?
 - Interventions – Epi & Norepi
 - Why NOT Neo?

“SIRS”
- Systemic Inflammatory Response Syndrome
 - Can occur due to non-infectious reasons
 - 2 or MORE signs as an ACUTE change
 - Temp. ≥ 100.4°F (38°C) or ≤ 96.8°F (36°C)
 - HR ≥ 90
 - RR ≥ 20 or PaCO₂ ≤ 32 mm Hg
 - WBC ≥ 12,000 cells/mm³ or ≤ 4,000 cells/mm³
 or ≥ 10% Bands (immature neutrophils)

Sepsis Definition
- SIRS + Infection = Sepsis

Severe Sepsis Definition
- Sepsis + Organ Dysfunction = Severe Sepsis

Types of Shock
- Septic “Hyperdynamic” Causes
 - Gram negative bacteria
 - Releases endotoxin
 - Gram positive bacteria
 - Releases exotoxin
 - SIRS – Similar appearance
Types of Shock

- SIRS/ Sepsis hyperdynamic Assessment
 - General Appearance
 - Skin warm
 - Pale to pink
 - UOP may be normal
 - Pulse: Increased
 - BP: May be Normal
 - CVP/PAOP: Decreased
 - CO/CI: Increased
 - SVR/PVR: Decreased

Case Study

- 63 yo M admitted – History of COPD, & alcoholism, Ventilator Dependent - Trach
- Dx. Pneumonia - Cultures Pending
- Assessment
 - LOC – Restless, Arousable & oriented x 2
 - HR 113, RR 24, (PRVC – 10)
 - BP 108/48, SpO₂ 92% - No ABG at this time
 - Skin flushed, diaphoretic,
 - UOP – 60 ml/hour
 - Temp: 102.9
 - CVP: 4, PAOP: 12, CO: 12.3, CI: 5.2
 - SVR: 416, PVR: 52
- SIRS Criteria MET?

Case Study – Sepsis?

- 63 yo M admitted – History of COPD, & alcoholism, Ventilator Dependent - Trach
- Positive Cultures for Klebsiella Pneumoniae
- PA Cath Placed & Intubated
 - HR: 113, BP: 90/48, UOP: 30 ml/h
 - CVP: 4, PAOP: 12, CO: 12.3, CI: 5.2
 - SVR: 416, PVR: 52
- Sepsis?
 - Interventions – Fluid Resuscitation
- SIRS Criteria ARE MET
- He MET the Criteria For SEPSIS
- SIRS + Infection = Sepsis
- Does He MEET Criteria for SEVERE SEPSIS?
 - Acute hypoperfusion or organ dysfunction
 - Pulmonary Failure – Intubated
- Interventions?
 - Fluids -Target MAP 60 – 65, CVP 8 – 12
 - Vasopressors if fluids fail
 - Early Antibiotics

What About Xigris?

- For Drotrecogin Alpha Activated
 - Do NOT Make Decision Solely Based on APACHE II
- Rh APC Recommended
 - APACHE II ≥ 25 AND/OR
 - High Risk of Death
 - Severe Sepsis – High Risk of Death
 - Sepsis Induced MODS
 - Sepsis Induced ARDS
 - Septic Shock

Surviving Sepsis

www.survivingsepsis.org
Types of Shock

- Septic Shock
 Hypodynamic Assessment
 - General Appearance
 - Skin cool, clammy, Decreased capillary refill
 - Pulse: Increased
 - BP: Decreased
 - CVP/PAOP: Increased
 - CO/CI: Decreased
 - SVR/PVR: Increased
 - UOP: Decreased

Case Study

- 63 yo M Vent dependent 36 hours later:
 (PRVC – 10)
 - HR: 115, BP: 88/68, RR: 20 T: 101
 - CVP: 11, PAOP: 18, CO: 3.8, CI: 2.0, SVR: 1340, PVR, 188
 - UOP: 20 ml/hour
 - Septic Shock?
 - Interventions
 - Optimize Hemodynamics
 - Consider adding Epinephrine or Dobutamine
 - Vasopressin if others fail to restore stability
 - PRBC administration if Hgb < 10
 - Optimize Pulmonary Functions

<table>
<thead>
<tr>
<th>Vitals</th>
<th>HYPO-VOLEMIC</th>
<th>CARDIOGENIC</th>
<th>NEUROGENIC</th>
<th>SEVERE SEPSIS</th>
<th>SEPTIC HYPER</th>
<th>SEPTIC-HYPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>BP</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↔</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>CVP</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↔</td>
<td>↓</td>
</tr>
<tr>
<td>PAOP</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>CO/CI</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>SVR</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>PVR</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

Conclusion

- What questions do you have?