Objectives

- Link altered electrolytes to potential life threatening complications
- Evaluate emergent treatment options for altered electrolyte disturbances

Hyperkalemia

- Serum level > 5.3
- Causes:
 - Crush injury
 - Acidosis
 - Renal failure
 - Rhabdomyolysis

Disclosures

- NONE!

The Lytes & ECG's Danger Signs!!

Potassium

- Normal:
 - 3.5 - 5.3 mEq/L

Case Studies in Electrolyte Management

Julie Miller, RN, BSN, CCRN
Hyperkalemia

- Cardiac changes
 - Greater Than 5.5
 - Peaked T waves
 - Prolonged PR Intervals

> 5.5

Hyperkalemia

- Greater Than 6.5
 - Prolonged PR and small P waves
- Greater Than 7.0
 - Widened QRS Tall T wave

> 7.5

Hyperkalemia

- Greater Than 8.0
 - Widened QRS, Sine waves
 - Varies by patient progresses to asystole

> 8.5

Hyperkalemia Treatment

- Protect the Heart
 - Calcium Chloride or gluconate
 - Stabilizes Cardiac Cell
 - Narrows the QRS

- Hide the Potassium
 - Insulin and glucose
 - Insulin Drive K⁺ Into Cell
 - Glucose prevents hypoglycemia
 - Na Bicarbonate
 - Drives K⁺ Into Cell

Hyperkalemia Treatment

- Excrete the Potassium
 - Sodium polystyrene sulfonate
 - Takes 2 – 12 Hours
 - Diuretics
 - Need Healthy Kidneys
 - Dialysis
 - Takes Time to Set-up
 - Requires hemodynamic stability

Serum level > 5.3

Hyperkalemia Treatment

- Protect the Heart
 - Calcium Chloride or gluconate
- Hide the Potassium
 - Insulin and glucose
 - Insulin Drive K⁺ Into Cell
 - Glucose prevents hypoglycemia
- Excrete the Potassium
 - Sodium polystyrene sulfonate
 - Takes 2 – 12 Hours
 - Diuretics
 - Need Healthy Kidneys
 - Dialysis
 - Takes Time to Set-up
 - Requires hemodynamic stability
Hyperkalemia Treatment

<table>
<thead>
<tr>
<th>Emergency Hyperkalemia Treatment</th>
<th>Protect the Heart</th>
<th>Hide the potassium</th>
<th>Excrete the potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Chloride or gluconate</td>
<td>Calcium Chloride</td>
<td>Insulin and</td>
<td>Sodium polystyrene</td>
</tr>
<tr>
<td>intravenous</td>
<td>chloride or</td>
<td>dextrose and</td>
<td>sulfonate, dialysis,</td>
</tr>
<tr>
<td>(CaCl) has three times more</td>
<td>gluconate</td>
<td>sodium bicarbonate.</td>
<td>diuretics</td>
</tr>
<tr>
<td>available Ca than gluconate</td>
<td></td>
<td>Insulin and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sodium bicarb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drive potassium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>into the cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>temporarily</td>
<td></td>
</tr>
</tbody>
</table>

Case Study

- 63 y.o. F. Diabetic, Chronic renal failure, HX of cardiac disease
- Found semi-conscious and bradycardic
- Transferred to ICU, Labs pending

Case Study

- 58 yo M
- Skipped last 2 dialysis treatments due to feeling poorly with cough and fever
- Admitted with Sepsis, Metabolic Acidosis
- Lactate 7.8
- Standard Hyperkalemia Treatment being administered during the code

Case Progression

- History obtained:
 - Patient kept bottle of Salt Substitute at bedside
 - Nursing Implications
- Case Conclusion
 - Patient Died at 0910
 - Potassium 7.3 mEq/Liter

Case Study

- 1324
- 1351
Case Progression

- 1431

Case Conclusion

- 1449

Hospital #1 in the ER 1115

Another Case!!

Hospital #2 Admit Med/Surg

- Direct Admit ECG at 1206 – “I have a concern” - Try CUSSING!!

CUS – From TeamSTEPPS

- C – “I have a Concern about....”
- U – “I am Uncomfortable because....”
- S – “This is a Safety issue and....”
- 2nd Time:
- I have a concern, this is unsafe, STOP
Hypokalemia

• Serum levels < 3.5

• Causes:
 – Diuresis
 – Gastric loss
 – Insulin
 – NaHCO3⁻

• Treatment
 • Protect the Heart!
 – Replace losses

Case Study

• At risk for PVC’s, V Tach, V Fib

Case Study

• 54 y.o. M c/o 3 day history of diarrhea and vomiting.

• Has continued Lasix tablets but stopped KCL because it upset his stomach

Guess the potassium?
Case Study

• Potassium: 1.8 mEq/Liter

• Treatment?
 – Replace the losses
 – IV: Not faster than 10 mEq/Hour

Hypokalemia

• Patient complains of feeling dizzy and palpitations....
 – See the “R on T”?

Case Study

• Treatment
 – Continue to replace potassium
 – Antidysrhythmics
 • Amiodarone
 – Dosing?
 • Lidocaine
 • Procainamide

Magnesium

• Normal:
 – Text book 1.2 - 2.9 mEq/L
 – 1.8 – 2.3 mEq/L

K+ K+ Mg++ K+
K+ Mg++

Hypomagnesemia

• Serum level < 1.2 mEq/L (< 1.8)

• Symptoms:
 – Muscle tremors
 – Nausea
 – Cardiac dysrhythmias?
 • Prolonged QT interval
Hypomagnesemia

VT & Torsades – Prolonged QT Causes

- Conditions & Medications that Prolong QT
 - Antidysrhythmics: amiodarone, procainamide, sotalol, ibutilide
 - Tricyclic Anti-Depressants
 - Haldol, Geodon

- Phenothiazines (Compazine, Thorazine)
- Hypomagnesemia, Hypocalcemia, Hypokalemia
- Hypothyroidism
- Liquid Protein Diets
- Antibiotics - Levaquin

Measuring the QT Interval

- QTc = QT measured / Square Root of the R-R interval
 - Should be Less 0.45 seconds

- Simplified Formula
 - QTc = Less than ½ the preceding R-R interval
 - Works with Regular Rhythms

Prolonged QT & Torsades

- History:
 - 40 yo admitted with Hx. of Methamphetamine Addiction
 - Placed on Telemetry
 - Haldol 10 mg IV prn for agitation
 - Doses given at 0330, 0430, 0610
 - AM Labs – Potassium and Magnesium
 - Potassium 2.7 mEq/Liter
 - Magnesium 1.7 mEq/Liter
 - Low levels of both of these put patient’s at risk for prolonged QT interval

Measure the patient’s QT Interval

- Actual measured QT interval is in PINK – It should be less than ½ the preceding R-R interval;
 - If you just measured the QT interval in pink it measures as “normal” at 0.44 sec. You need to compare the QT to the preceding R-R interval to correct it for the heart rate.
- Measured R-R interval is in BLUE – R-R interval is 0.62 sec – the measured QT should be less than ½ the preceding R-R interval

Measure QT Interval

- When you compare the measured QT to the preceding R-R interval, the QT of 0.44 seconds is prolonged as it is greater than ½ the preceding R-R interval
- RR interval is 0.62 sec – The QT should have been less than 0.31 sec.
10 minutes after 4th Dose of prn Haldol

Nursing Implications
• Be AWARE of the numerous medications which prolong the QT
• Amiodarone, Levaquin, Haldol, Geodon, anti-depressants, etc. see table below
• When giving a medication that may prolong the QT interval
 – Measure the QT and correct it for the HR = QTc
 – QT calculated or QTc = QT (measured) ÷ √R-R interval (seconds)
 – Evaluate your electrolytes and correct

Update your knowledge with the latest AHA Scientific statement found at:
http://circ.ahajournals.org/content/121/8/1047.full.pdf+
http://ajcc.aacnjournals.org/content/17/1/77.full.pdf+

Table Medications that Prolong the QT interval

<table>
<thead>
<tr>
<th>Medications implicated in torsades de pointes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proocainamide</td>
</tr>
<tr>
<td>Chlorpromazine</td>
</tr>
<tr>
<td>Disopyramide</td>
</tr>
<tr>
<td>Quinidine</td>
</tr>
<tr>
<td>Class III antiarrhythmics</td>
</tr>
<tr>
<td>Sotalol</td>
</tr>
<tr>
<td>Dofetilide</td>
</tr>
<tr>
<td>Amiodarone & Geodon</td>
</tr>
</tbody>
</table>

Antimicrobials
Antiprotozoals
Pentamidine
Macrolides
Clarithromycin
Erythromycin
Antimalarials
Chloroquine
Halofantrine

Adapted from AJCC
AMERICAN JOURNAL OF CRITICAL CARE, January 2008, Volume 17, No. 1

Antipsychotics
Phenothiazine neuroleptics
Mesoridazine
Thioridazine
Droperidol
Pimozide
Haloperidol
Diphenylpiperidine neuroleptics
Butyrophenone neuroleptics
Others
Methadone
Arsenic trioxide

Amiodarone & Geodon should not be used together

Potassium and Magnesium
• Electrolytes – Rule of Thumb
 – Potassium > 4.0
 – Magnesium > 2.0

Hypermagnesemia
• Serum level
 – > 2.9 mEq/L
• Symptoms:
 – Respiratory depression
 – ECG is similar to hyperkalemia

Calcium
• Normal:
 – Total: 8.6 – 10 mEq/Liter
 – Ionized: 1.16 – 1.32 mEq/Liter
Calcium

- Total Calcium
 - 8.6 - 10.0 mg/dl
 - 40% bound to albumin
 - Must correct for low albumin
 - Normal albumin = 3.5 – 5.0

- Ionized Calcium
 - 1.16 - 1.32 mmol/L
 - Levels change based on pH
 - Decrease in pH causes increase in Ca
 - Relationship to Phosphorous?
 - Inverse

Calcium

- Needed
 - Bones
 - Muscles
 - Skeletal and Cardiac
 - Cardiac Conduction
 - Especially SA - AV conduction
 - Clotting

Hypercalcemia

- Causes
 - Immobility, Multiple Myeloma, Alkalosis, Hyperparathyroidism
 - Thiazide diuretics

Hypercalcemia

- Signs and Symptoms
 - N/V, Constipation, Confusion, AV Blocks, Shortened Q-T interval

Hypocalcemia

- Causes
 - Blood transfusions, GI Loss, CRF, Acute Pancreatitis, Hypoparathyroidism
- Banked Blood
 - Citrate to prevent Clots
 - Binds with Calcium

- Treatment
 - NS, Loop Diuretics, Mithramycin, Oral Phosphates

- Blood transfusions, GI Loss, CRF, Acute Pancreatitis, Hypoparathyroidism
- Banked Blood
 - Citrate to prevent Clots
 - Binds with Calcium
Hypocalcemia

• Signs and Symptoms
 – Tremors, Cramps, Lethargy, Labored Shallow Respirations
 – Prolonged QT
 – Irritable Heart

• Treatment
 – Monitor and Replace

Case Study

• 68 yo M admitted for multiple myeloma
 – Confused, restless, weak
 – Monitor:

 Sinus Brady with First Degree Heart Block

Case Study

• 68 yo M admitted for multiple myeloma
 – Monitors shows Sinus brady with 1st degree AV block
 – PR Interval – 0.24 – 0.26
 – Guess the calcium level?

 12.1

Case Study – What rhythm?

Case Study

• 65 yo F Hx. Hyperparathyroidism admitted for nausea and vomiting
 – Medications include Digoxin – Not sure why she takes this medication
 – Attached to monitor
 – 12 Lead ECG ordered and Labs sent

Case Study

• Treatment?
 – DC Digoxin
 – NS at 150 ml/hour – Watch out for pulmonary edema
 – Lasix 20 mg IVP every 6 hours
Phosphate

- **Intracellular**
 - 15% total body
 - 85% bound with Calcium in bone
 - Muscle, Nervous System
 - RBC
 - Glucose Metabolism

- **Normals**
 - Adults
 - 2.5 – 4.5 mg/dl
 - Child
 - 4.5 – 5.5 mg/dl
 - Newborn
 - 4.5 – 9 mg/dl

- **Hyperphosphatemia**
 - Kidney dysfunction
 - Hypoparathyroidism
 - Hypocalcemia
 - Excessive Vit. D
 - Bone tumors and metastases

- **Hypophosphatemia**
 - Hyperparathyroidism
 - Diabetic coma (Increased CHO metabolism)
 - Increased Insulin
 - Malnutrition
 - Hypercalcemia

Osmolality

- **Osmolality**
 - Amount or number of dissolved particles in solution - Solutes
 - 275 – 295 mOsm/kg H₂O
 - Movement of fluid occurs due to osmosis
 - Movement of fluid from lesser concentration to higher concentration
 - Sodium, BUN and Glucose are Solutes

Case Study

- 73 yo M Hx. CVA
 - Receiving tube feedings at 60 ml/hour
 - Na 145, K⁺ 4.8, BUN 36 Cr. 1.2
 - Serum Osmolarity = 297
 - Quick Reference – Estimate Osmolality
 - 2 Times Na = Osmolality Estimate
 - 2 X 145 = 290
 - Osmo = 297 = Lot’s of Particles
 - Not Enough Water
 - Needs Fluids

Sodium

- **Normal Serum Levels:**
 - 135 -145 mEq/L

Hypernatremia

- **Causes:**
 - DI – Neurogenic or Nephrogenic
 - Dehydration – Water loss
 - Drugs: ie Na Bicarbonate

- **S & Sx:**
 - Confusion to coma
 - Febrile, Tachycardic
Hypernatremia

- **Dehydration**
 - Almost Always
- **Serum Labs**
 - Hypernatremia
 - Osmolality elevated
 - Hypokalemia
- **Urine Labs**
 - Hyponatremia
 - Low osmolality

Hypernatremia

- Sodium stays in body with massive fluid loss
- Clues
 - Urine Sodium Low with Volume losses – DI
 - Urine Sodium HIGH with renal Na loss with osmotic diuresis ie with DKA

Case Study

- 52 y.o, s/p subarachnoid hemorrhage
- 800 ml of urine over last hour - Clear Pale Yellow
- Serum Sodium 148
- Serum Osmolality is 302
- Urine Osmolality 200 mOsm/kg
- What is this?
 - Diabetes Insipidus

Hyponatremia

- **Causes:**
 - Dilutional
 - SIADH, CRF, DM, Water intoxication
 - Salt Wasting Syndromes
 - DKA, Water Intoxication
 - Atrial Natriuretic Peptide
 - ACE Inhibition

Hyponatremia

- SIADH – Syndrome of Inappropriate ADH
 - “Swimming In” ADH
 - Excess Secretion from Post. Pituitary
 - Excess ADH
 - Decreased UOP
 - Water Retention – Volume Overload
 - Dilutional Hyponatremia
Hyponatremia

- Salt wasting
 - Atrial Natriuretic Factor
 - Hormone produces sodium excretion
 - Associated with Neurologic damage
 - Results in:
 - High urine output
 - Low serum sodium
 - Water loss = Dehydration
 - Decreased CVP & PAOP

- Hyponatremia
 - S & Sx
 - Headache, muscle cramps, confusion, Tachycardia, Seizures
 - Dilutional
 - Increased CVP & PAOP
 - Saline Loss
 - Volume Loss
 - Decreased CVP & PAOP

- Treat Underlying Cause
 - SIADH
 - Fluid Restrict, Diuretics, Hypertonic Saline
 - Salt Wasting
 - Isotonic Fluid Replacement
 - Hypertonic Saline

Case Study

- 56 y.o. F Bronchogenic Oat Cell Carcinoma, Ventilator Dependent – Trach, Confused.
- Decreased urine output
 - Urine Osmolality HIGH
- Serum Na: 132
- What is this?
 - SIADH due to Positive Pressure Ventilation &/or Lung Cancer

Differentiating

<table>
<thead>
<tr>
<th>SIADH</th>
<th>Salt Wasting</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too Much ADH</td>
<td>ANP related to HHH</td>
<td>Too Little ADH</td>
</tr>
<tr>
<td>Low Serum Na</td>
<td>Low Serum Na</td>
<td>High Serum Na</td>
</tr>
<tr>
<td>Low UOP</td>
<td>High UOP</td>
<td>High UOP</td>
</tr>
</tbody>
</table>

Electrolyte Review

- Hyperkalemia and Hypermagnesemia
 - Tall tented T Waves
 - Widen the QRS
 - Flatten the P wave
 - Prolong the PR Interval
 - Bradycardia progressing to ASYSTOLE
Electrolyte Review

• Hypokalemia and Hypomagnesemia
 – Irritate the Heart
 – PVC’S
 – V Tach
 – V Fib
 – Torsades des Pointes due to prolonged QT interval

• Hypercalcemia
 – Prolong the PR Interval
 – Brady and Blocks
 – Shortens the Q-T
 – Slows muscle contraction
 – Slows electrical conduction

Electrolyte Review

• Hypocalcemia
 – Irritable Ventricle
 – Decreased Contractility
 – Prolonged QT – May lead to Torsades!
 – Alters the clotting cascade – at risk for bleeding
 – Irritable muscles – Tremors
 • Positive Chvostek’s and Trosseau’s

• Hypernatremia
 – Almost always associated with dehydration

• Hyponatremia
 – Correct Sodium levels slowly

Questions

• 28 yo pt. Admitted for 4 days N/V and diarrhea, unable to keep any food or liquid down. The electrolyte disturbance you might expect is:
 a. Hyperkalemia
 b. Hypercalcemia
 c. Hypokalemia
 d. Hyponatremia

Questions

• 48 yo pt admitted with renal insufficiency. Has been recently diagnosed with hyperparathyroidism. The electrolyte disturbance you might expect is:
 a. Hypercalcemia
 b. Hypokalemia
 c. Hypocalcemia
 d. Hypernatremia
Questions

• You are caring for a patient with renal failure who is receiving antacids. Telemetry tech calls to report your patient is displaying a prolonged PR interval, widened QRS and tall peaked T-Wave. Labs are drawn and you expect to find:
 a. Hypernatremia & Hyperkalemia
 b. Hypokalemia & Hypomagnesemia
 c. Hyperkalemia & Hypermagnesemia
 d. Hyponatremia & Hypokalemia

Questions

• You are caring for a patient with acute pancreatitis. Neurologic assessment shows confusion and short term memory loss. Patient c/o of “Jittery” muscles. You expect the labs to show:
 a. Hypocalcemia
 b. Hypercalcemia
 c. Hypermagnesemia
 d. Hypophosphatemia

Speaker Contact

• Julie Miller, RN, BSN, CCRN
• President and Founder – Paws To Learn — Empowering Nurses with Education!

 Phone: 903-245-1223
 Email: julie.miller@pawstolearn.com

Bibliography / Webliography

• http://circ.ahajournals.org/content/121/8/1047.full.pdf+html
• AACN Article:
 http://ajcc.aacnjournals.org/content/17/1/77.full.pdf+html?sid=5f191396-9e05-4271-9f65-c283c96f8b13
• Maffei FA, Connolly H. Toxicity, Tricyclic Antidepressant. Last Updated: August 2, 2004